

May 21, 2020

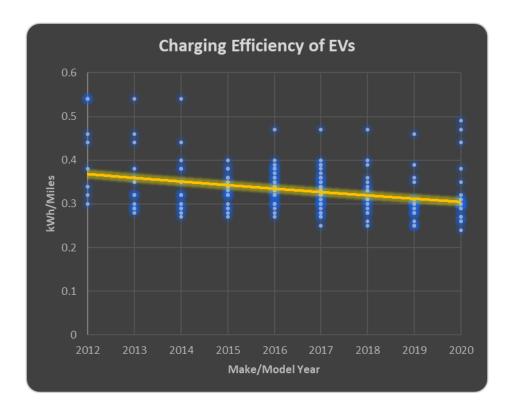
VERMONT PUBLIC SERVICE DEPARTMENT

RATE DESIGN INITIATIVE / DISTRIBUTED ENERGY RESOURCES STUDY STAKEHOLDER ENGAGEMENT MEETING #4

LSAM™ AND THE VT RATE DESIGN INITIATIVE

- LSAM™ allows iteration of input assumptions to evaluate many future states of the electric market in Vermont
 - Future electric usage will vary vis-à-vis market forces, decarbonization, and technology adoption
- LSAM™ allows the user to manage system peaks through
 - Electric rates to send price signals to manage load
 - Static and dynamic rate design
 - Behavioral change, technology adoption, or both
 - Directly manage load through flex capacity
 - Controllable flex load "calls", timing and duration

LSAM™ UPDATE - SINCE LAST STAKEHOLDER MEETING


- Technical Working Group (TWG) call 4/28/2020
 - Follow-up development of LSAM demo video
 - https://youtu.be/vTn-w7i9Jko
- Solicited and received feedback from TWG on questions on how the model functions and on results coming out of the model
- Feedback has been reviewed, and will be incorporated in the language and modeling results conveyed in NewGen report

LSAM™ UPDATE – FEEDBACK FROM TWG ON EVS

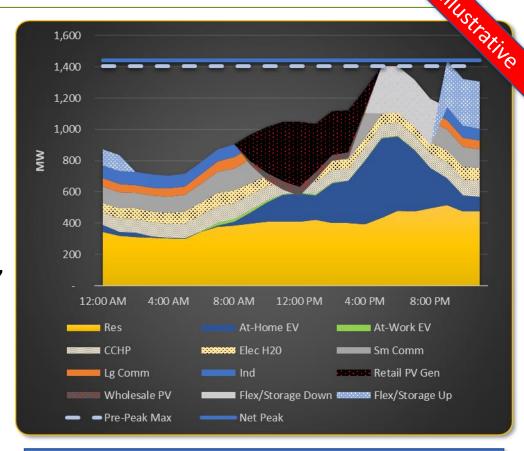
- Feedback from TWG primarily on EV assumptions and impacts
 - Fixed some issues w/ data labels
 - Comments on EV growth
 - Linear vs. exponential to reflect actuals to-date
 - Question on total EV kWh energy per vehicle
 - LSAM EV charging profile comes from National Household Transportation Survey
 - Northeastern Metropolitan locations <1M people without mass transit
 - Vehicle mileage in NHTS is higher than GMP's vehicle data
 - ~12,550 miles/yr in LSAM/NHTS vs. 10,900 miles/yr from GMP
 - » LSAM is overstating energy consumption of EVs, but not necessarily demand
 - » Issue to be noted in NewGen report

LSAM™ UPDATE – FEEDBACK FROM TWG ON EVS

- EV charging efficiency
 - Model assumes constant 0.313 kWh/mile
 - Provided by VEIC as a blended average charging efficiency for the state in 2019 (AEV/PHEV split)
 - Efficiency may evolve with
 - Charging efficiency
 - Model availability impacts
 - GMP notes vehicle charging efficiency fluctuates w/ weather
 - LSAM modeled constant charging efficiency for all seasons/months resulting in energy consumption
 - Under-estimated in hot and cold months
 - Over-estimating in shoulder season
 - Issue to be noted in report

FuelEconomy.gov: https://tinyurl.com/y7tydwht

LSAM™ UPDATE – FEEDBACK FROM TWG ON EVS


- EV load/charging profile
 - There are differences between LSAM/NHTS driving data and GMP's actual metered EV load
 - LSAM/NHTS EV load peaks earlier in the day (~4-6pm) than GMP's data (8pm-10pm)
 - Differences in modeled to actual future EV charging will drive different impacts on peak demand
 - Lower non-EV load in evening
 - Availability of PV to offset EV charging
 - At-Work charging assumptions
 - Assumed EVs charged At-Work also charge At-Home
 - Count of NHTS vehicle trips ending at work
 - NewGen will note these issues in our report

	Delta +/-			
	Summer		Winter	
	Weekday	Weekend	Weekday	Weekend
0:00	-7%	-4%	-6%	-3%
1:00	-6%	-6%	-5%	-6%
2:00	-5%	-4%	-4%	-49
3:00	-4%	-3%	-3%	-39
4:00	-3%	-2%	-3%	-29
5:00	-2%	-1%	-2%	-19
6:00	-2%	-1%	-2%	-19
7:00	-1%	0%	-2%	-19
8:00	0%	0%	-1%	-19
9:00	1%	1%	0%	19
10:00	2%	1%	1%	19
11:00	2%	2%	2%	39
12:00	3%	5%	3%	59
13:00	2%	3%	2%	39
14:00	4%	4%	4%	39
15:00	4%	3%	4%	29
16:00	7%	3%	7%	39
17:00	9%	2%	9%	29
18:00	7%	3%	6%	29
19:00	3%	0%	2%	09
20:00	0%	-2%	-1%	-39
21:00	-3%	-2%	-3%	-19
22:00	-5%	-2%	-5%	09
23:00	-5%	-2%	-5%	-19

Analysis from GMP:
Percentages representing LSAM load / GMP metered EV load

VERMONT RATE DESIGN INITIATIVE LSAM™ UPDATE – ADDITIONAL FEEDBACK FROM TWG

- Flexible Load Snapback
 - GMP noted that managing "snapback" of controlled loads becomes more complex with greater capacity under management
 - Load shaping vs. load curtailing to avoid new peaks
 - Tranches of capacity, staggered CPP/TOU periods, etc.
- Distribution cost impacts
- Issues raised by the TWG will be outlined in NewGen report

Example w/ 300 MW of EV load "snapping back"

PANEL DISCUSSION #1 -

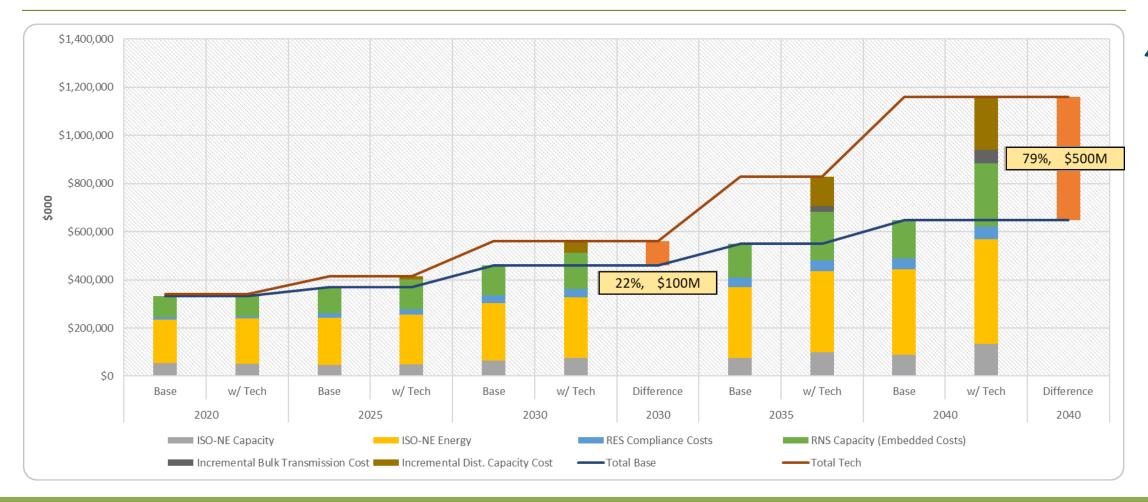
POTENTIAL AREAS FOR RECOMMENDATIONS

- Scott Burnham (NewGen) Moderator
- Rick Weston (RAP)
- Jeff Monder (GMP)
- Paul Hines (Packetized Energy, U. of Vermont)
- Freddie Hall (BED)

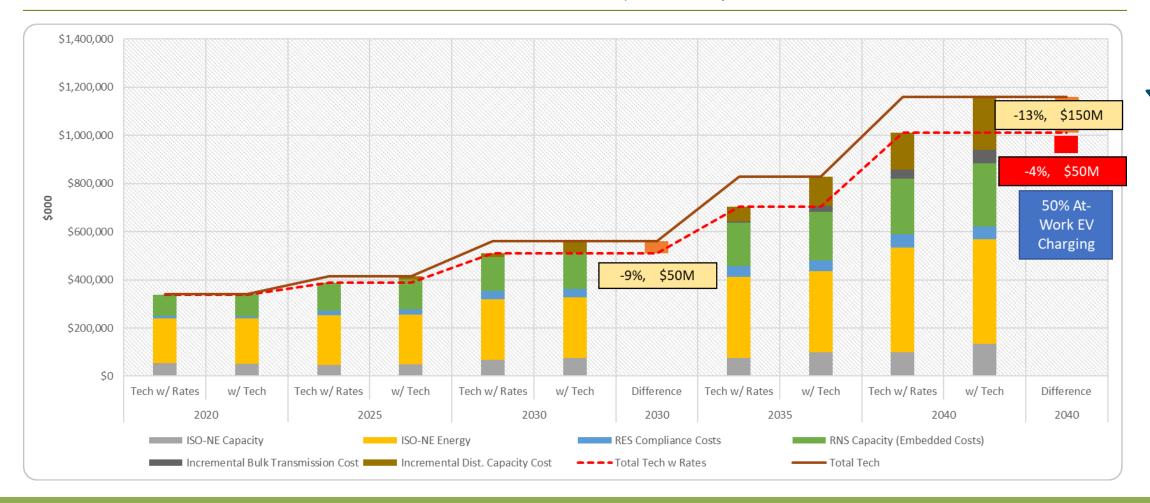
May 21, 2020

VERMONT PUBLIC SERVICE DEPARTMENT

RATE DESIGN INITIATIVE / DISTRIBUTED ENERGY RESOURCES STUDY STAKEHOLDER ENGAGEMENT MEETING #4

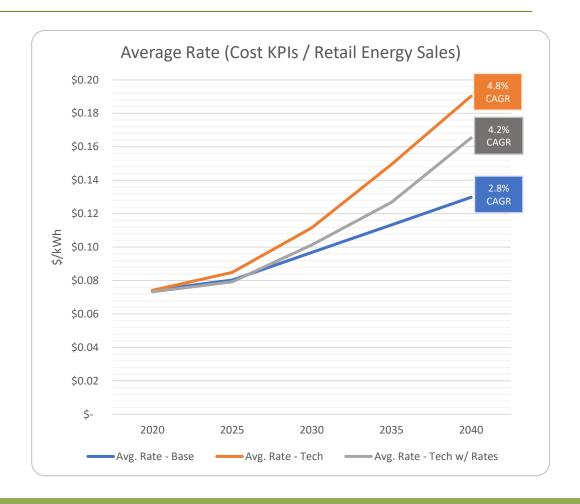

LSAM™ AND THE VT RATE DESIGN INITIATIVE

- LSAM™ allows iteration of input assumptions to evaluate many future states of the electric market in Vermont
 - Future electric usage will vary vis-à-vis market forces, decarbonization, and technology adoption
- LSAM™ allows the user to manage system peaks through
 - Electric rates to send price signals to manage load
 - Static and dynamic rate design
 - Behavioral change, technology adoption, or both
 - Directly manage load through flex capacity
 - Controllable flex load "calls", timing and duration


COMPARISON BETWEEN MODELED SCENARIOS

BASELINE VS. INCLUDING TECHNOLOGY ADOPTION - 2040

Downward Pressure


COMPARISON BETWEEN MODELED SCENARIOS TECHNOLOGY ADOPTION FUTURE VS. TECH W/ RATES, AT-WORK EV - 2040

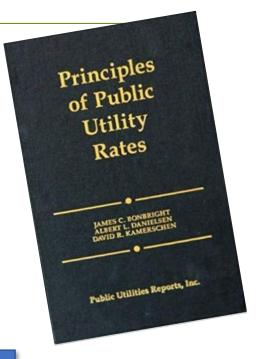
LSAM MODELED RATE PRESSURE

BEFORE AND AFTER STRATEGIC RATE DESIGN

- Electric market evolution will exert upward rate pressure
 - CAGR of 4.8% vs. 2.8% (Base)
- Innovative rates can send price signals for customers to change usage and manage costs
 - Initial modeled savings \$150M-\$200M

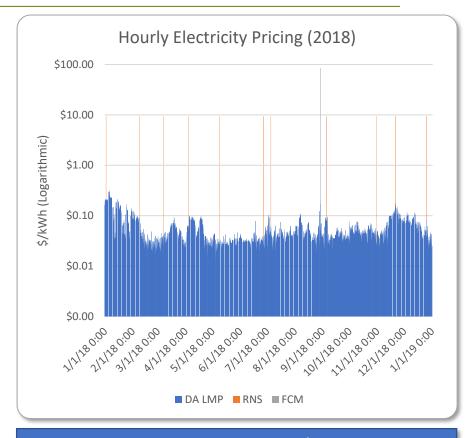
LSAM MODELED RATE PRESSURE AS AN INPUT TO DEVELOPING RECOMMENDATIONS FOR THE FUTURE

- LSAMTM is a tool to be used to provide insight into indicative forecasts and impacts of an evolving Vermont electric market
 - LSAMTM to facilitate quantifying differences in long-term views
- The exact magnitude and timing of future impacts varies with one's view of the future and corresponding input assumptions
 - But EVs and other electrification are expected to drive new load, new peaks, and new costs
 - Innovative rate design and direct control of end-use load can manage these impacts


FOUNDATIONAL GOALS OF RATE DESIGN IN GENERAL

- Bonbright's Principals of Utility Rate Making
 - Practical
 - Uncontroversial as to interpretation
 - Meet revenue requirement
 - Revenue stability

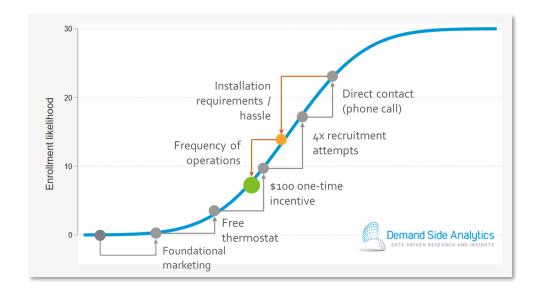
- Rate stability
- Fairness among customers
- Avoidance of undue discrimination
- Economic efficiency
- As the electric industry evolves, rate design can and should be viewed as more than just a backwards-looking accounting exercise


"Rates as a Resource"

Electric rates can be a forward-looking tool sending price signals to end-use customers to recover <u>and manage</u> electric system costs

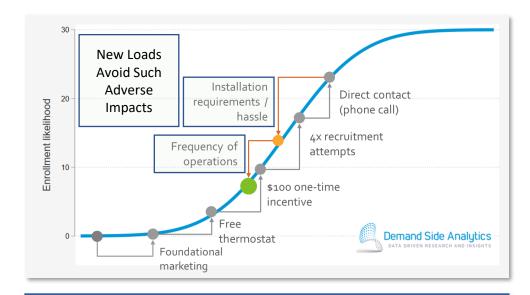
INNOVATIVE ELECTRIC RATE DESIGN HOURLY AND MARGINAL VS. EMBEDDED COST OF SERVICE

- Total electric system costs are a function of electric consumption during all hours
 - But some hours are more costly than others
- Innovative rate design informed by marginal costs serves a dual purpose:
 - Improves equity in aligning with cost causation
 - Signals the customer to change usage patterns
- Marginal cost analyses can inform incentives for customer behavior change


Vermont operating in an RTO/ISO market makes marginal cost analysis substantially easier

INDIRECT AND DIRECT LOAD CONTROL

- Utilities can manage load indirectly or directly
 - Indirect: Better align substantial pricing differentials in certain hours of the year with rate design, incenting customer behavior and/or technology adoption to shift load
 - Or the customer will pay more for load during expensive hours
 - <u>Direct</u>: Utility may directly control (curtail) the customer's load, turning down during expensive hours, in exchange for a payment or other incentive
- The efficacy of each type of program is largely a function of enrollment


IMPLEMENTATION AND ENROLLMENT CHALLENGES

- To be effective, innovative rate design offerings must have
 - Customer enrollment and
 - Customer behavior change <u>or</u>
 - Increased customer electric bills
- Enrollment in innovative rate design offerings is deterred by both
 - Increased frequency of behavior change and
 - Risk of higher electric bills deter enrollment
- Enrollment is also a function of utility marketing and available incentives
 - May be improved with regulatory encouragement

IMPLEMENTATION AND ENROLLMENT CHALLENGES

- Old static TOU rates with low customer enrollment:
 - Not typically actively marketed by the utility
 - Applied to an entire household/business load
 - Requiring substantial frequency of operations or installation of substantial new tech
- Certain types of newer loads
 - Do not require frequent behavior change (Set it and forget it!)
 - Do not require substantial new tech
 - Can be very responsive to pricing signals

Time-differentiated rate design is not a new concept . . . We've had a TOU rate for years and nobody's on it

END-USE DIFFERENTIATED ELECTRIC RATE DESIGN

- Certain loads can be "turned down"*
 with minimal impact to customer
 - EV charging
 - Heat pump water heaters
 - Others (commercial opportunities?)
- Importance of "consumer comfort"
 - Will a targeted change to usage be "felt" by the customer?
 - Turning down heating/cooling during the coldest/hottest hours of the year

One of these things is not like the other...

RAP + DOE (EV) Elasticities EV-Specific Elasticity 120% 100% Peak Reduction 20% 1000% On-Peak to Off-Peak Pricing Differential

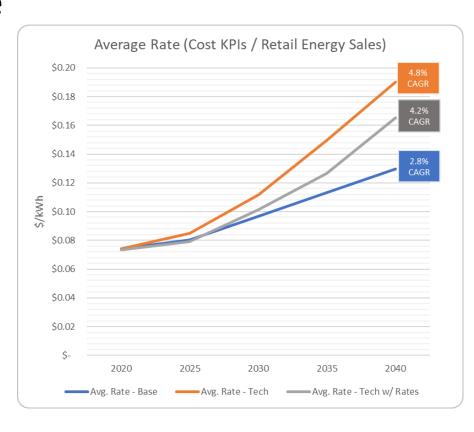
^{*} By the customer and/or directly by the utility

END-USE DIFFERENTIATED ELECTRIC RATE DESIGN

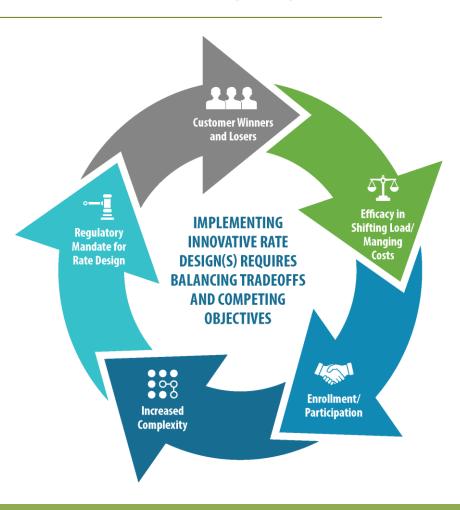
- Electric rates can be targeted at certain electric end-uses
 - Programmable loads with a defined duration that can be completed in the off-peak periods may be managed with static TOU
 - Electric vehicle charging
 - Heat pump water heaters?
 - Loads varying with weather may be better managed with dynamic rates (CPP, RTP) or direct load control
 - Space conditioning
 - Enrollment in CPP/RTP may be limited due to "customer comfort" factor
 - Utility-controlled space heating/cooling may be cycled to manage peak with limited impacts to "customer comfort"

UTILITY MARKETING AND IMPLEMENTATION

- Utilities should market innovative rate programs to customers making certain purchases
 - Partnerships with device vendors offering programs that save the customer money
- Where incentives are offered to the customer, utilities should require enrollment (mandatory or opt-out)
 - EV charger incentives
 - Smart thermostats
 - Other energy efficiency incentives, etc.
- In other opportunities of consumer education or communication, such programs should be advertised and the benefits made clear

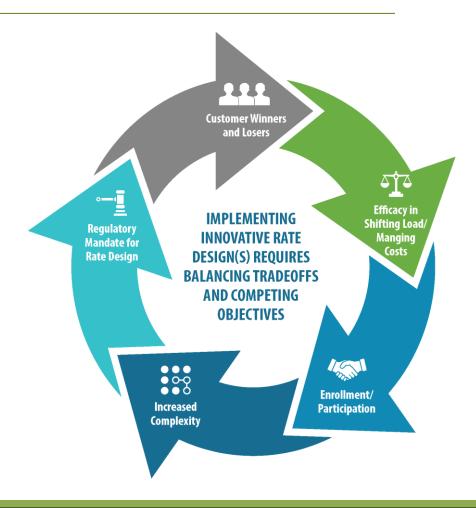

NEW BUSINESS MODELS AND THE ROLE OF 3RD PARTIES

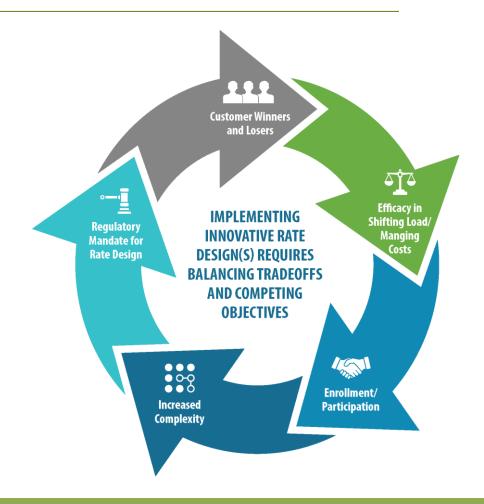
- As technology evolves and where there is mutual benefit to the customer and the utility, look to new models of service
 - Utility vs. 3rd party offering
 - Fixed fee(s) for service offering a total cost reduction with direct load management responding to dynamic utility cost drivers



MAY 21, 2020

- There is likely to be (substantial) upward rate pressure in the future from increased adoption of
 - PV
 - EVs
 - Cold Climate Heat Pumps
 - Heat Pump Water Heaters
 - Other electric technologies


- Electric rates should create stability, equity, and recover costs
 - but can be used as a resource in managing costs
- Rates can better align with timedifferentiated cost drivers to incent behavior or tech adoption improving system costs
 - Detailed analyses of cost drivers
 - Simplified by Vermont's participation in ISO market


- Utilities should tailor innovative rate offerings to specific end-use technologies
 - More "bang for the buck" in targeting loads that can easily change and thus reduce peak
 - Improves customer enrollment by avoiding substantial behavior change/tech installation
 - Acknowledge importance of "customer comfort" in seeking behavior change

- Utilities should actively market enrollment in innovative rate offerings
 - In exchange for incentives, encourage (mandate or opt-out) enrollment
 - Otherwise leverage consumer communication or education on benefits (savings) of enrollment

- Look to new business/service models and partnerships as technologies evolve
 - Example: Flat fee service at a reduced total cost in exchange for direct load control
 - Utility vs. 3rd part management

